
24 CROSSTALK The Journal of Defense Software Engineering July 1998

Recently, I was invited to a
meeting in Washington D.C. to
review a proposed quality stan-

dard for the year 2000. Although the
meeting was focused on testing, the
discussion reinforced the multifaceted
nature of the Y2K problem. Since few
people have seen a problem like this, we
need to characterize it in a way that
clearly identifies the actions that must be
taken, and a checklist could be what is
needed. It would describe the actions
required and enable managers to quickly
see the work they need to get under way.

After drafting the Y2K readiness
checklist, I had several knowledgeable
people review it. Although no brief
checklist can be complete, this one cov-
ers the points the reviewers and I felt
were most important. Organizations
may identify additional important areas,
but they should not substantially expand
the checklist because that would make it
harder to use and less effective.

This checklist is designed to help you
judge the readiness of your organization
for the Y2K transition. In using this
checklist, you should consider several
points.
• The Y2K transition problem will be

much like those you have experi-
enced in installing and converting to
a new system or application program
version, only this time, you will be
installing and converting to an up-
dated version of every application
and system simultaneously.

• If you experience Y2K problems with
any commercially supplied software

package, other users will likely have
similar problems at the same time.
Thus, the vendors’ help desks and
support services will probably be
swamped with calls and unavailable
for extended periods.

• Unless you have contracted for
dedicated support services, you
must be prepared to be self-suffi-
cient. If you have a support con-
tract, you need to ensure the suppli-
ers of such services have resources
dedicated to your needs.

• The Y2K cutover will most likely
result in multiple application and
system crashes and other disasters. It
is therefore essential that you main-
tain complete backups of all applica-
tion and system data and programs.
Note, however, that with the Y2K
problem, traditional backup practices
will not work. Usually, when backing
up, one returns the system to a prior
configuration that worked. In this
case, at least until after the cutover
period, there will be no prior con-
figuration that is known to work.

• Be careful about vendor selection
because there will likely be unscrupu-
lous providers of Y2K services. When
organizations do not have a compe-
tent technical staff, dishonest opera-
tors could pretend to do the required
work, then disappear before Jan. 1,
2000. Any organization that wants
substantial payments upfront should
be avoided like the plague. Although
scams are nothing new, Y2K is an
extremely attractive opportunity; any
organization that is victimized could
well be out of business before it can
recover damages.

• View all Y2K tools, services, guide-
lines, and checklists (including this
one) with a high degree of skepti-
cism. Remember, none of them have
been tested in practice and shown to
work. You therefore must examine all
such offerings and satisfy yourself
that they are credible and reliable.

• Consider each specific item in this
checklist and satisfy yourself that it is
necessary for your organization.
With the exception of the crisis re-
sponse, zero-hour testing, and emer-
gency backup, all other items except
one may or may not be essential,
depending on your situation. Al-
though you may not need these
essential items, if you do (and most
organizations will) you cannot build
them on short notice.

• The one capability exception that
every organization should put in
place as soon as possible is a configu-
ration management system. If you do
not have this capability, you will
most likely have problems that could
be severe and unrecoverable. This
must not be viewed as something to
do later when you have a chance. Put
a configuration management system
in place now.

The Y2K Readiness Checklists
The following checklists are designed to
help you quickly assess the readiness of
your organization for the Y2K transi-
tion. Complete the organization check-
list first (Figure 1), then fill out the ap-
plication checklist for every active
application (Figure 2).

Year 2000 Readiness Checklists
Watts S. Humphrey

Software Engineering Institute, Carnegie Mellon University

The checklists in this article are designed to help organizations determine their readiness for the year 2000
(Y2K) date change. The lists are brief but include the items many experienced professionals have concluded are
necessary for adequate Y2K preparation. They will help managers quickly assess their status and determine
where they are exposed. This article also includes explanations of the various items and some general comments.

This article is based on “What Does Y2K Mean to
You,” Object Magazine Online, April 1998
(http://www.sigs.com/omo).

Software Engineering Technology



CROSSTALK The Journal of Defense Software Engineering 25July 1998

Figure 1. The Y2K organization readiness checklist.

* Organization Units (laboratory, plant, etc.): Done Under Way Plan No Plan
Should be done by Jan. 1, 1998.

1 Adequate 1998 budget and staff in place.
2 Configuration management system in place.
3 Applications inventoried.
4 Applications assessed (with checklist).
5 Application source code under control.
6 Application priorities determined.
7 Y2K tools available.
8 Date change standards defined and tested.
9 Database correction inventoried.

10 Service and support facilities surveyed for Y2K.
11 Critical applications staffed and in development.

Should be done by Jan. 1, 1999.
12 Adequate 1999 budget and staff in place.
13 Applications updated and in test�critical.
14 All applications staffed and in development.
15 Database corrections staffed and in development.
16 Service and support corrections under way.
17 Hot-line group funded and staffing identified.

Should be done by July 1, 1999.
18 Backup procedures defined.
19 Applications updated and in test�key.
20 Emergency procedures defined and tested.
21 Customer and supplier testing under way.
22 Zero-hour procedures defined.
23 Hot-line groups staffed and supporting testing.
24 Database corrections in test.

Should be done by Sept. 1, 1999.
25 Emergency procedures training in place.
26 Applications updated and in test�all.
27 Zero-hour procedures tested.
28 Backup procedures tested.
29 Service and support tests completed.

Should be done by Dec. 1, 1999.
30 All application and database testing complete.
31 Adequate Y2K budget and staff in place.
32 Customer and supplier testing completed.
33 Emergency procedures training complete.
34 Backup procedures in full operation.
35 Zero-hour testing staffed for Jan. 1, 2000.
36 Hot lines fully staffed and rehearsing procedures.

Should be done by Jan. 1, 2000.
37 Emergency procedures rehearsals completed.
38 Zero-hour testing under way for Jan. 1, 2000.
39 Zero-hour testing staffed for Feb. 19, 2000.

Completing the Checklist
Have the most knowledgeable engineers
and managers complete the checklists.
Brief descriptions of the checklist terms
follow the checklists. In completing the
checklist, the columns to the right refer
to the status of the application or the

overall organization. If all the required
work has been done, check the “done”
column. Similarly, if the work is not yet
done but the project is staffed and under
way, check the “under way” column.
Later, when the application checklists are
completed, you can enter percentage
values for the percent of applications

that have been completed for each
checklist category.

The Y2K Application Checklist
Complete the application checklist for
every active application in the organi-
zation.

Checklist Definitions – Checklist
Columns
The four columns to the right of the
checklist are for status information. In
most cases, this work is either done or
not done. Generally, it is desirable to
either check the item or enter a date
when it will be done. After an initial
assessment, and after the work is under
way, it is helpful to enter a percentage
figure, as with “Applications assessed
(with checklist).” Here you would enter
the percentage of the applications as-
sessed. Note, however, that the columns
should add to 100 percent when using
percentage values for a checklist row.

It also is important to only count
completed work. For example, if you
have 10 items and three of them are
finished, that would be 30 percent com-
plete. When six of 10 items are each half
done, however, you would have zero
percent done. Do not take credit for
partially completed work because partial
status is generally hard to estimate and
can be misleading.

The status levels are defined as fol-
lows:

Done – This column is checked when
the listed work has been completed.

Under Way – This column is for work
that is staffed and under way. In those
cases where the work is only 50 percent
staffed, for example, it would be more
informative to enter a 50 percent in this
column. Note that this column does not
give any indication of whether the work
is likely to be completed on schedule.

Plan – This column is for those cases
where the work is planned but it is not
yet staffed or the staff may have been
identified but the work has not yet
started.

No Plan – This column is for those areas
where the work has not yet been planned

Year 2000 Readiness Checklists



26 CROSSTALK The Journal of Defense Software Engineering July 1998

Application Name:
Application Priority:
Application Support Needs Yes No
Emergency procedures required.
Hot-line capability required.
Zero-hour testing required.

* Done Under Way Plan No Plan
Should be done by Jan. 1, 1998.

50 Application priority determined.
51 Source code available.
52 Source code checked against object code in use.
53 Critical applications: staffed and in development.
54 Applications under configuration management.
55 Database correction inventoried.

Should be done by Jan. 1, 1999.
56 Applications updated and in test�critical.
57 All active applications: staffed and in development.
58 Database corrections staffed and under way.
59 Hot-line groups funded and staffing identified.

Should be done by July 1, 1999.
60 Emergency procedures defined and tested.
61 Applications updated and in test�key.
62 Critical applications tested with updated database.
63 Hot line partially staffed and supporting testing.

Should be done by Sept. 1, 1999.
64 Emergency procedures training in place.
65 All applications updated and in test.

Should be done by Dec. 1, 1999.
66 All application testing complete.
67 Emergency procedures training complete.
68 Hot-line fully staffed and rehearsing procedures.

Should be done by Jan. 1, 2000.
69 Emergency procedures rehearsals completed.
70 Zero-hour testing under way.

Figure 2. The Y2K application checklist.

or it has been planned but no staff has
yet been identified to do the work.

* – Where any tasks are late or need
special attention, mark them with an
asterisk in the “*” column.

Application Priorities
The definition of critical applications is
a matter of judgment and must usually
be settled by senior management. It is
therefore suggested that a comprehensive
listing of all applications be reviewed
with management together with a list of
those applications that are deemed criti-
cal and why. This is the action called for
under “Application priorities deter-
mined.” These priorities should specify
which programs are critical, key, active,
and inactive and also which will need
emergency backup procedures, hot-line
support, or zero-hour testing.

The application priorities are as
follows:

Critical – These are the applications on
which the organization’s business de-
pends. They can be found by identifying
the work that would have to be done
manually if all computers were shut
down for weeks or months. Without the
critical applications, the business could
not function.

Key – The key applications are those the
business needs but are not a matter of
organizational survival. Although they
are needed, their unavailability for pe-
riods of weeks and even a few months
would not be fatal; that is, either the
application work can be deferred or
manual back-up procedures will be de-
vised to handle the needs in the interim.

Active – The active applications are
those actively in use other than critical
or key applications. These applications
may only be run once a year or occasion-
ally on demand. Although they are
needed, their repair can be deferred until
shortly before the application is needed.
Note, however, that some applications
may only be used once a year for tax
purposes. If that one-time use is in Janu-
ary, however, this could become a critical
application.

Inactive – These are all the applications
that are no longer in active use. In most

cases, these would not warrant a Y2K
repair effort.

Readiness Dates
The dates given in the checklist are se-
lected based on overall judgment of the
amount of work to be done in a small-
to medium-sized organization that has a
competent software staff on hand. These
are the latest advisable dates; organiza-
tions should strive to get this work done
earlier if possible. Also, if the organiza-
tion is extremely large or if it does not
have a reasonably large and competent
staff, these dates should be even earlier.

For large organizations, earlier dates
are needed because of the huge volume
of work. Smaller organizations without a

substantial information systems staff will
need to hire one or more suppliers of
Y2K services. It takes time to identify
and obtain these services, so these orga-
nizations should work to meet the earli-
est possible dates.

Alphabetical Glossary
Following is an alphabetical listing of
definitions of many of the items on the
readiness checklists. The topic headings
are the same as in the checklists, and the
numbers refer to the numbers in the
asterisk column.

(1, 12, 31) Adequate (year) budget and
staff in place – This should be
management’s top priority. Unless the

Software Engineering Technology



CROSSTALK The Journal of Defense Software Engineering 27July 1998

work is staffed in time, there is no way
to finish in time. The adequacy of the
funding and staffing should be based on
an assessment of a plan to do the work
and an estimate of the resources re-
quired.

(4) Applications assessed (with check-
list) – This refers to applications being
assessed with the application checklist.

(3) Applications inventoried – Every
application in use must be identified.
This requires naming the application
and where and when it runs. The inven-
tory also should list available source
code, manuals, procedures, and guide-
lines about the application, who uses it,
and when. This information is needed to
set priorities.

(6, 50) Application priority determined
– Management must decide which appli-
cations to fix, which to replace, and
which to handle with a hot-line capabil-
ity. This sets the priorities for every ap-
plication and guides the allocation of
development work. If these decisions are
not made early in the Y2K program,
important programs will likely be over-
looked while less critical applications are
being fixed. Management must set pri-
orities at the earliest possible point:
which applications are critical, key, ac-
tive, and inactive.

(5) Application source code under con-
trol – see “Configuration management”
and “Source code available.”

(54) Applications under configuration
management – see “Configuration man-
agement.”

(13, 19, 26, 56, 61, 65) Applications
updated and in test – once corrected,
the applications must be tested with the
corrected databases. It is important that
this testing cover the applications’ func-
tions as well as all the code and database
changes.

(18, 28, 34) Backup procedures – The
Y2K cutover will most likely result in
multiple application and system crashes
and other disasters. It is essential that

complete backups be maintained of all
application and system data and pro-
grams and that these backups be up-
dated frequently. All old backups must
also be retained since files can be un-
knowingly corrupted and not discovered
until much later. Good practice dictates
that backups be taken as early as pos-
sible, even before Y2K work starts. Note,
however, that with Y2K, traditional
backup practices will not work. Usually,
when backing up, one returns the system
to a prior configuration that worked.
With Y2K, at least until after the cutover
period, there will be no prior configura-
tion that is known to work.

(2, 54) Configuration management –
The configuration management system
maintains physical and electronic control
of the organization’s programs and data.
Applications that have been in use for
many years often have not been changed
for much of that time. Unless the organi-
zation has an established configuration
management system, the source code
could have been lost. The configuration
management system is also needed to
ensure that the changed programs are
properly updated in test and that only
tested programs are put into use. With-
out an effective configuration manage-
ment system, organizations are likely to
lose programs, misapply fixes, or use the
wrong tests and test data. All this wastes
time, which is the one thing you cannot
recover.

(21, 32) Customer and supplier testing
under way – Many businesses have
critical dependencies on their customers
or suppliers. Where these relationships
involve data processing interactions,
there will likely be Y2K problems. The
fixes to these problems must be tested in
advance.

(9, 15, 24, 55, 58) Database corrections
– Depending on the Y2K change strat-
egy, many database changes may have to
be made. Also, during the transition,
there are many ways that databases can
be corrupted. Until programs have been
corrected, for example, many date calcu-
lations will put incorrect dates in the
database. After the programs are cor-

rected, subsequent dates will be correctly
calculated. The application, however,
will not go back and search for the in-
correct entries in the old data. This must
be done by hand or with special tools, if
any can be found. This issue is further
complicated by the phased cutover of
multiple applications. The corrected
databases must then be tested with the
corrected applications.

(8) Date change standards defined and
tested – The Y2K date conversion for-
mulas are not complex, but they are not
trivial. It is essential that the engineering
change teams know precisely how to
handle date calculations.

(20, 25, 33, 37, 60, 64, 67, 69) Emer-
gency procedures defined – With large
systems and large volumes of changes,
there will be many defects. Thus, even
the most critical applications will likely
be unavailable for periods. The organiza-
tion must be prepared for this eventual-
ity and have a capability in place to
handle any problems. The emergency
procedures define how an application is
handled under these conditions. Manual
procedures should be in place and tested
for all critical and selected key applica-
tions. Because large numbers of people
will need to know how to quickly re-
spond in an emergency, training pro-
grams and procedure rehearsals will
generally be needed.

(17, 23, 36, 59, 63, 68) Hot lines – The
hot-line support group handles the crisis
calls when applications fail during and
after the Y2K cutover. Since application
failures can occur early for applications
with advanced dates (like credit card
expirations), the hot-line groups may
have to be staffed much earlier, depend-
ing on application needs. It also is im-
portant to staff these groups early to give
them experience with the applications
they will handle. The best way to do this
is to have them in place handling Y2K
testing problems and fixes.

A hot-line support capability will be
needed even for those applications that
have been completely repaired and
tested, because between 1 percent to 20
percent or more of all the Y2K fixes will

Year 2000 Readiness Checklists



28 CROSSTALK The Journal of Defense Software Engineering July 1998

likely have problems, even after testing.
With a fix quality program in place, the
1 percent number is achievable. If not,
20 percent or more is likely, depending
on staff experience, program complexity,
and the degree of testing.

Generally, you will need applica-
tion-knowledgeable people to staff the
hot lines. They provide telephone assis-
tance to system and application users,
internal or external. Their job is to help
the application users when they run
into problems.

(10, 16, 29) Service and support –
Many facilities such as elevators, security
systems, power distribution, telephone
systems, and air conditioning could have
date dependencies. Although these items
may not have problems, they could.
Each one should be tested or checked
with the manufacturer for Y2K compli-
ance and warranty coverage.

(51) Source code available – If the
source code for any active program is not
available and the program has date de-
pendencies, the application must be
replaced and tested. Replacement may
be expensive and take time, but without
the original author, programs can rarely
be fixed without the source code.

(52) Source code checked against object
code in use – In older systems, applica-
tions were occasionally patched to avoid
the time required to recompile and re-
build. When this has been done, the
source code will not represent the pro-
gram that is being used. When the devel-
opers update the source code for the
Y2K fixes, compiling and installing it
will erase all these prior object correc-
tions. The result will be the simulta-
neous re-emergence of all the problems
the original object patches were designed
to fix. These problems will not wait until
the year 2000; they will happen starting
now. To resolve such problems, these
patches must be identified and added to

the Y2K workload. These patches can be
found by compiling a new object pro-
gram from the source and making a bit-
for-bit comparison with a copy of the
object program in use.

(7) Y2K tools available – This box
should only be checked after the tools
have been evaluated, obtained, and
tested in practice. Until they are, it is
likely that many of the tools will be
found less effective or harder to use than
promised.

(22, 27, 35, 38, 70) Zero hour – The
zero hour is midnight Friday, Dec. 31,
1999. Over the long weekend of Jan. 1,
2000, the large and complex Y2K system
change must be tested live for the first
time. The zero-hour procedures define
how the time between Thursday, Dec.
30, 1999 and Tuesday, Jan. 4, 2000 is to
be used. During this period, many
groups should make test application
runs both in-house, with suppliers, and
with customers. This weekend is also
when the hot-line support groups must
move up to full capacity. The zero-hour
procedures are used to phase repaired
applications into service and recover
from any problems found. Although this
cutover should be started as early as
possible, special recovery resources and
procedures must be available and tested
during zero-hour testing. Plan to main-
tain the zero-hour testing capability until
all the critical applications are cut over
and work properly. This will likely take
at least a month and could take much
longer. Some organizations plan to
maintain this special testing and support
capability for at least three months.

(39) Zero-hour testing under way for
Feb. 29, 2000 – Normally, there is a leap
year every four years. The exception is
every 100 years when there is not a leap
year. This too has an exception every
400 years when there is a leap year.
Thus, 2000 is a leap year, and there will
be a Feb. 29, 2000. It is important that

the date change algorithms be clearly
defined and disseminated so everybody
working on this problem understands
them. Since these date algorithms will
first be tested Feb. 29, 2000, a zero-hour
testing plan is needed.

Summary
Any organization that does not have an
active Y2K program under way had best
get started immediately. The date when
the work will be completed is principally
determined by when the work starts. If
you are still studying, stop and get to
work. Make a plan at the same time, but
get to work! ◆

About the Author
Watts S. Humphrey is a
fellow at the Software
Engineering Institute
(SEI) of Carnegie Mel-
lon University, which he
joined in 1986. At the
SEI, he established the

Process Program, led initial development
of the Capability Maturity Model, intro-
duced the concepts of Software Process
Assessment and Software Capability
Evaluation, and most recently, the Personal
Software Process and Team Software Pro-
cess. Prior to joining the SEI, he spent 27
years with IBM in various technical execu-
tive positions, including management of
all IBM commercial software development
and director of programming quality and
process. He has master’s degrees in physics
from the Illinois Institute of Technology
and in business administration from the
University of Chicago. He is the 1993
recipient of the American Institute of
Aeronautics and Astronautics Software
Engineering Award. His most recent books
include Managing the Software Process
(1989), A Discipline for Software Engineer-
ing (1995), Managing Technical People
(1996), and Introduction to the Personal
Software Process (1997).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

Software Engineering Technology


